Tackling Amazonian Rainforest Deforestation

This week’s edition of Nature devotes an editorial, a special report and an interview to the subject of tropical rainforests and their deforestation. The articles highlight both the proximate causes and underlying driving forces of tropical deforestation, and the importance of human activity as an agent of change (via fire for example), in these socio-ecological systems.

The editorial considers the economics of rainforest destruction, with regards to global carbon emissions. It suggests that deforestation must be integrated into international carbon markets, to reward those countries that have been able to control the removal of forest land (such as India and Costa Rica). Appropriate accounting of tropical rainforest carbon budgets is required however, and the authors point to the importance of carbon budget modelling and the monitoring of (via satellite imagery for example) change in rainforest areas over large spatial extents. Putting an economic price on ‘ecosystem services’ is key to this issue, and the editorial concludes:

One of the oddly positive effects of global warming is that it has given the world the opportunity to build a more comprehensive and inclusive economic model by forcing all of us to grapple with our impact on the natural environment. We are entering a phase in which new ideas can be developed, tested, refined and rejected as necessary. If we find just one that can beat the conventional economic measure of gross domestic product, and can quantify some of the basic services provided by rainforests and other natural ecosystems, it will more than pay for itself.


The special report focuses on the efforts of the Brazilian government to curb the rate of deforestation in the their Amazonian forests. The Brazilian police force is blockading roads, conducting aerial surveys and inspecting agricultural and logging operations, to monitor human activities on the ground. Brazilian scientists meanwhile are monitoring the situation from space, and have developed methodologies and techniques that are leading the way globally in the remote monitoring of forests. The Brazilian government is a keen advocate of the sort of economic approaches to the issues of rainforest destruction highlighted in the editorial outlined above, and sees this rigorous monitoring as key to be able to show how much carbon they can save by preventing deforestation.

Halting the removal of forest cannot simply be left to carbon trading alone, however, and local initiatives need to be pursued. To ensure the forest’s existence is sustainable, local communities need to be able make money for themselves without chopping down the trees – if they can do this it will be their in their interests NOT to remove forest. But developing this incentive has not been straightforward. For example, some researchers have have suggested that as commodity prices for crops such as soya beans have increased (possibly due to increased demand for corn-based ethanol in the US) deforestation has increased as a result. Although the price of soya beans may be a contributing factor to rainforest removal, Ruth DeFries (who will be visiting CSIS and MSU next week as part of the Rachel Carson Distinguished Lecture Series) suggests that it is not the main driver. Morton et al. found that during for the period 2001-04, conversion of forest to agriculture peaked in 2003. This situation makes it clear that there are both proximate causes and underlying driving forces of tropical deforestation. The Nature special report suggests:

If the international community is serious about tackling deforestation, it will probably need to use a hybrid approach: helping national governments such as Brazil to fund traditional policies for enforcement and monitoring and enabling communities to experiment with a market-based approach.


But how long do policy-makers have to discuss this and get these measures in place? One set of research suggests 55% of the Amazon rainforest could be removed over the next two decades, and the complexity of the rainforest system means that a ‘tipping point’ (i.e., an abrupt transition) beyond which the system might not recover (i.e., reforestation would not be possible). The Nature interview with Carlos Nobre highlights this issue – the interactions of climate change with soil moisture and the potential for fire indicate that the there is risk of rapid ‘savannization’ in the eastern to southeastern Amazon as the regional climate changes. When asked what the next big question scientists need to address in the Amazon is, Nobre replies that the role of human-caused fire will be key:

Fire is such a radical transformation in a tropical forest ecosystem that biodiversity loss is accelerated tremendously — by orders of magnitude. If you just do selective logging and let the area recover naturally, perhaps in 20–30 years only a botanist will be able to tell that a forest has been logged. If you have a sequence of vegetation fires going through that area, forget it. It won’t recover any more.


As I’ve previously discussed, considering the feedbacks and interactions between systems is important when examining landscape vulnerabilities to fire. Along with colleagues I have examined the potential effects of changing human activity on wildfire regimes in Spain (recently we had this paper published in Ecosystems and you can see more wildfire work here). However, the integrated study of socio-economic and ecological systems is still very much in its infancy. And the processes of landscape change in the northern Mediterranean Basin and the Amazonian rainforest are very different; practically inverse (increases in forest in the former and decreases in the latter). As always, plenty more work needs to be done on these subjects, and with the potential presence of ‘tipping points’, now is an important time to be doing it.

Hyenas – Sociable, and Smart


Some of my friends are graduate students studying Hyenas in the Department of Zoology at MSU. Today an article related to their work was published in the New York Times. Their advisor, Dr. Kay Holekamp, has concluded that the lives of spotted hyenas, share some profound similarities with our own. In both species, a complex social world has driven the evolution of a big, complex brain…

read more | digg story

Forest Ecology and Management Special Issue: Forest Landscape Modeling

In June 2006 the China Natural Science Foundation and the International Association of Landscape Ecology sponsored an international workshop of forest landscape modelling. The aim of the workshop was to facilitate a discussion on the progress made in the theory and application of forest landscape models. A special issue of Forest Ecology and Management, entitled Forest Landscape Modeling – Approaches and Appplications [Vol. 253, Iss. 3], presents 12 papers resulting from that meeting. In their editorial, He et al. summarise the papers, organising them into three sections that describe current activities in forest landscape modelling: (1) effects of climate change on forest vegetation, (2) forest landscape model applications, and (3) model research and development.

The LANDIS model is used in several of the papers on climate and human management of forest systems. Advances in the representation of processes that propagate spatially, including fire and seed dispersal, are discussed in several of the papers examining model research and development. He et al. conclude their editorial by reiterating why landscape models are a vital tool for better understanding and managing forested regions of the world:

The papers represented in the special issue of forest landscape modeling highlight the advances and applications of forest landscape models. They show that forest landscape models are irreplaceable tools to conduct landscape-scale experiments while physical, financial, and human constraints make real-world experiments impossible. Most of the results presented in this issue would not have been possible without the use of forest landscape models. Forest landscape modeling is a rapidly developing field. Its development and application will continually be driven by the actual problems in forest management planning and landscape-scale research. We hope that the papers contained in this special issue will serve both researchers and managers who are struggling to incorporate large-scale and long-term landscape processes into their management planning or research.

IALE-IUFRO WG Website


A while back the ‘new’ IALE-IUFRO Working Group website launched, so I thought I’d highlight it here. During the IALE World Congress 2007 in Wageningen, a new IALE-IUFRO working group was approved and sanctioned by both IALE (International Association of Landscape Ecology) and IUFRO (International Union of Forestry Research Organizations):

Forestry was the first major field to recognize the importance of landscape ecology, and today foresters widely know, use, and even develop landscape ecology principles based on experience and science. Landscape ecology is an exciting field for researchers and managers together. In this sense, landscape ecology is viewed as the nexus of ecology, resource management, and land use planning. It is within this framework of synergy and integration that we envisaged this formal link between the two groups.

Thus, the IALE-IUFRO WG aims to collate landscape ecologists with an interest in forest science and ecology including studies and methods for monitoring, planning, designing, and managing forest ecosystems and landscapes. Through the website, members of IALE-IUFRO WG will be able to exchange experiences and share common needs and interests to build up on the strength of the network. This group can serve as an international platform for advocating and updating research and management on forest landscapes.

Tom Veldkamp: Advances in Land Models

As I mentioned before, the Global Land Project website is experimenting with the use of webcasts to enable the wider network to “participate” and use the GLP webpage as a resource. For example, several presentations are available for viewing from the Third Land System Science (LaSyS) Workshop entitled ‘Handling complex series of natural and socio-economic processes’ and held in Denmark in October of 2007. One that caught my attention was by Tom Veldkamp, mainly because of its succinct title: Advances in Land Models [webcast works best in IE].


Presented in the context of other CHANS research, Veldkamp used an example from the south of Spain to discuss recent modelling approaches to examine the effects of human decisions on environmental processes and the feedbacks between human and natural systems. The Spanish example examined the interaction of human land-use decision making and soil erosion. A multi-scale erosion model, LAPSUS, represented the interactive natural and human processes occurring olive groves on steep hillslopes; gullying caused by extreme rainfall events and attempts to preserve soils and remove gullies by ploughing. Monte Carlo simulations were used to explore uncertainties in model results and highlighted the importance of path dependencies. As such, another example of the historical dimension of ‘open’ systems and the difficulties it presents for environmental modellers.

The LAPSUS model was coupled with the well known land use/cover change CLUE model to examine feedbacks between human land use and erosion. The coupled model was used to examine the potential implications of farmers adopting land use practices as a response to erosion. Interestingly, the model suggested that human adaptation strategy modelled would not lead to reduced erosion.

Veldkamp also discusses the issue of validating simulation models of self-organising processes, and suggests that ensemble and scenario approaches such as those used in global climate modelling are necessary for this class of models. However, rather than simply using ‘static’ scenarios that specify model boundary conditions, such as the IPCC SRES scenarios, scenarios that represent some form of feedback with the model itself will be more useful. Again, this comes back to his point about the importance of representing feedbacks in coupled human and natural systems.

For example, Veldkamp suggests the use of “Fuzzy Cognitive Maps” to generate ‘dynamic’ scenarios. Essentially, these fuzzy cognitive maps are produced by asking local stakeholders in the systems under study to quantify the effects of the different factors driving change. First, the appropriate components of the system are identified. Next, the feedbacks between these components are identified. Finally, the stakeholders are asked to estimate how strong these feedbacks are (on a scale of zero to one). This results in a semi-quantitative systems model that can be run for several iterations to examine the consequences of the feedbacks within the system. This method is still in development and Veldkamp highlighted several pros and cons:

Pros:

  • it is relatively easy and quick to do
  • it forces the stakeholders to be explicit
  • the emphasis is placed on the feedbacks within the system

Cons:

  • it is a semi-quantitative approach
  • often feedbacks are of incomparable units of measurement
  • time is ill defined
  • stakeholders are often more concerned with the exact values they put on an interaction rather than the relative importance of the feedbacks

I agree when Veldkamp suggests this ‘fuzzy cognitive mapping’ is a promising approach to scenario development and incorporation into simulation modelling. Indeed, during my PhD research I explored the use of an agent-based model of land use decision-making to provide scenarios of land use/cover change for a model of forest succession-disturbance dynamics (and which I am currently writing up for publication). ‘Dynamic’ model scenario approaches show real promise for representing feedbacks in coupled human natural systems. As Veldkamp concludes, these feedbacks, along with the non-linearities in system behaviour they produce, need to be explicitly represented and explored to improve our understanding of the interactions between humans and their environment.

Global Land Project

The Global Land Project is a proposed joint research project for land systems for the International Geosphere-Biosphere Programme (IGBP) and the International Human Dimensions Programme (IHDP). It plans to build upon previous work and the research network developed during the Global Change and Terrestrial Ecosystems (GCTE) and Land Use/Cover Change (LUCC) projects. The GLP website states:

The Global Land Project Science Plan represents the research framework for the coming decade for land systems. This development of a research strategy is designed to better integrate the understanding of the coupled human-environment system. These integrated science perspectives reflect the recognition of the fundamental nature of how human activities on land are affecting feedbacks to the earth system and the response of the human-environment system to global change.

The GLP will evidently be an important component of CHANS research in the coming years. Of the three research ‘Nodal Offices’ around the world, one is located in Aberdeen, Scotland and will be essentially run by the folks at the Macaulay Institute. They have several workshop coming up in 2008, the titles which seem to suggest discussion of the sort of work that I often insist on espousing on this blog. In late February 2008 Workshop 1. will examine The design of integrative models of natural and social systems in land change science, and 2 later in the year Workshop will discuss Data and model integration for coupled models of land use change. As I write it looks like those interested in such matters can still apply to attend. Future workshops will examine:

  • Integration of the economic and spatial modelling of land use change
  • Representation of land systems in the modelling of ecosystem services
  • Economic, social and environmental valuation of land use systems

Also on the GLP website are a series of webcasts from previous workshops for all those that missed out on attending (like me). There are some pretty interesting presentation on there, and in a couple of days I think I’ll post about the recent Advances in Land Models as presented by Tom Veldkamp.

To Catch a Panda


One of the main research foci of CSIS is the interaction of policies, people, and Giant Panda habitat in China. Recently, Vanessa Hull, one of the CSIS PhD students, set off for the mountains of Sichuan province with the aim of catching and radio-collaring four Giant Pandas. Once collared, she’ll be tracking the movements of the Panda so that we might learn more about these endangered animal’s habitat preferences.

The MSU Newsroom have picked up on her current fieldwork and have set up a website detailing her work. Tracking and capturing individuals from this elusive species is easier said than done though. So that we can keep track of how successful (or otherwise) she is, Vanessa is posting excerpts from her journal online. A contemporary account of conservation research in the field, it promises to be interesting…

Sustainability Science: An Emerging Interdisciplinary Frontier

Sustainability. Integration. Interdisciplinary. These are the three words that stood out from Prof William C. Clark’s Rachel Carson Distinguished Lecture at MSU on Thursday and reflect the research we do at the the Center for Systems Integration and Sustainability.

Prof Clark discussed the recent emergence of ‘Sustainability Science’ as a field that is use-inspired (like health science or agricultural science), that is defined by the practical problems it addresses, that is focused on the scientific understanding of coupled human and natural systems (CHANS), and that integrates knowledge and research from multiple disciplines.

The definition of ‘sustainability’ has always been a tricky one – in part Clark suggested because it is a concept that is as broad as concepts such as ‘freedom’, ‘good’ and ‘bad’. What sustainability means depends on who is using the word and the context of the problem in which it is being used. Because sustainability science is use-inspired, what is to be sustained is defined by the the problem or issue being addressed. In one situation the objective might be examine how best to sustain a community’s cultural and social well-being, in another it might be the continuation of the life-supporting functions of an ecosystem, and in yet another it might the continued growth of the economy and the material well-being that affords. An idealist might argue that the objective should be to sustain all three examples, but in reality priorities will often need to be drawn up.

Clark used Stoke’s (1997) presentation of the four quadrants of the reasons to undertake research, highlighting that sustainability science falls into Pasteur’s Quadrant. Research in sustainability science is driven by both a quest for fundamental understanding and the consideration of the use to which the research will be put in the real world. Research with the goal of the former alone might be termed ‘Basic Research’ (e.g. physics – Bohr’s Quadrant), whereas the latter might be termed ‘Applied Research’ (e.g. engineering – Edison’s Quadrant). Through time, research in Pasteur’s Quadrant often results in a dialogue between the basic and the applied sciences, as demonstrated below.


The characterisation of sustainability science highlights that the domain of sustainability science is geo-historical. Place and history are important in defining both the problem to be examined and the solutions we might suggest. Prof Clark highlighted this, noting that a good knowledge of the environmental history of the location under study is important, and that such a history can be used in some ways as a laboratory provides data. But equally we need to remember that this history can be framed or contextualised itself – the narrative of an environmental history is unlikely to provide data that is as ‘objective’ as would be produced in a biology lab say.

Furthermore, the nature of geo-historical systems highlights the problems associated with a science that tries to be both applied and basic. How do we take use the knowledge gained from a given study to inform wider policy and decision making? Critics can argue that ‘it only happens in this particular place’, whereas advocates can argue that ‘it happens like this everywhere’. A balance between these stances will need to be struck. Multiple examples of processes, treatments, and outcomes in different places might be one way to approach this balance. Given that real-world systems are context-dependent, and that the problems sustainability science will study are value-laden, a certain level of subjectivity probably isn’t such a big deal anyway. The development of nomothetic generalizations in the same vein as the hard sciences may not be possible. However this situation, which implies uncertainty, will need to be acknowledged and understood by decision-makers.

Clark also discussed the ‘lessons for designing university-based knowledge systems for sustainability’. An article in the current issue of Futures highlights the issues faced by university departments and researchers wishing to perform sustainability science:

“The art of problem-based interdisciplinarity lies in the choice of problems that will be both academically and socially fruitful. Too heavy emphasis on the former leads to research that may successfully address problems within a particular field of study and make a contribution to the literature but that are of limited value or interest beyond the academy. Too much emphasis on the latter leads to work that is indistinguishable from consulting or pure advocacy work. Being problem-driven means starting from a problem or concern in society, but, in order to create the hybrid activity described above, this problem must be translated into a form that is amenable to issue-driven interdisciplinary research. Such translation is an indispensable prerequisite to obtaining funding from academic funding agencies and buy-in from academic collaborators, who have to be able to undertake research that will lead to publications in the outlets in which they need to publish in order to further their career prospects.”


To develop successfully Prof Clark suggested that the academy will need to maintain and engage strength in the foundation disciplines, support focused programs of ‘use-inspired basic research’ on core questions of sustainability science, build collaborative problem-solving programs, and create recognition and reward systems for those who develop and participate in such programs. The ‘publish or perish’ mantra also demands that there be suitable outlets for sustainability science research – the creation of the Sustainability Science section in PNAS is an indication that the importance, and uniqueness, of this emerging interdisciplinary field of study is becoming increasingly recognised.

There was so much more said and discussed during Prof Clark’s visit to MSU but that’s enough here for now. A copy of the powerpoint presentation used during the lecture can be downloaded from the CSIS website.

Staying Together… for the Sake of the Environment?

I may be a little behind the times but I have finally begun to digg stuff. From now on if I digg something that I really like or think it is relevant to what I talk about on this blog I’ll post it directly from digg. Given the media interest in the most recent paper to come out of CSIS it seems appropriate that this be the first blog from digg:

“A married household actually uses resources more efficiently than a divorced household,” said Jianguo Liu, a sustainability expert with Michigan State University. He and fellow researcher Eunice Yu concluded that in 2005, in the United States alone, divorced households could have saved 38 million rooms, 73 billion kilowatt-hours of electricity and 627 billion gallons of water if their “resource-use efficiency” had been comparable to that of married households. Liu’s analysis of the environmental impact of divorce appears in this week’s online edition of Proceedings of the National Academy of Sciences. Besides the United States, Liu looked at 11 other countries, including Brazil, Costa Rica, Ecuador, Greece, Mexico and South Africa between 1998 and 2002. In the 11, if divorced households had combined to have the same average household size as married households, there could have been a million fewer households using energy and water in these countries. “People have been talking about how to protect the environment and combat climate change, but divorce is an overlooked factor that needs to be considered,” Liu said.

read more | digg story

25 Years of Landscape Ecology


This year marks the 25th anniversary of the establishment of the International Association for Landscape Ecology and the 20th anniversary of the first publication of the journal Landscape Ecology. To highlight these landmarks several guest editorials appear in the latest edition of the journal (which has swelled from around 250 pages per year to almost 1,400).

Jianguo Wu briefly describes how the field of landscape ecology was first envisioned by Carl Troll as the integration of geographic and ecological disciplines, defining it as:

“the study of the main complex causal relationships between the life communities and their environment” which “are expressed regionally in a definite distribution pattern (landscape mosaic, landscape pattern)” (Troll 1971).


As such, the other invited Editorials discuss the need to remain holistic. As I’ve mentioned before, reading about the vision of a holistic landscape ecology is one of the reasons I’ve ended taking the route I have. Zev Naveh emphasises the need for landscape ecology to be a ‘transdisciplinary science of landscape sustainability’, providing pragmatic information for decision-making and becoming become a ‘post-normal’ prognostic and normative science.

Paul Opdam continues this discussion, highlighting the need for landscape ecologists to develop skills and techniques for transferring knowledge from science to the world of the actors in policy, planning, design and management. This knowledge transfer will be most successful if based on a science that provides credibility, saliency and legitimacy by considering the integrations of landscape systems as a whole. Thus holistic nature will then contribute to decisions based on principles of sustainable management of our landscapes.

However, Marc Antrop highlights that this potential has yet to be fully realised. The practical applications of landscape ecology in planning and policy making remain inadequate, the main problem lying in the (poor) communication to non-landscape ecologists. Landscape ecology will continue to provide insight into the functioning of interacting social, ecological, economic, and environmental systems at the landscape level. If it does become more prescriptive, as these Editorials suggest it must, it will also begin to contribute more obviously directly to the sustainable management of the landscapes in which we live.