Millington 2006 Book Chapter

I’ve just received the offprint from the book chapter I wrote with George Perry and Bruce Malamud and have posted it on my website.

MILLINGTON, J.D.A, Perry, G.L.W. and Malamud, B.D. (2006) Models, data and mechanisms: quantifying wildfire regimes In: Cello G. & Malamud B. D. (Eds.) Fractal Analysis for Natural Hazards. Geological Society, London, Special Publications

Abstract
The quantification of wildfire regimes, especially the relationship between the frequency with which events occur and their size, is of particular interest to both ecologists and wildfire managers. Recent studies in cellular automata (CA) and the fractal nature of the frequency–area relationship they produce has led some authors to ask whether the power-law frequency–area statistics seen in the CA might also be present in empirical wildfire data. Here, we outline the history of the debate regarding the statistical wildfire frequency–area models suggested by the CA and their confrontation with empirical data. In particular, the extent to which the utility of these approaches is dependent on being placed in the context of self-organized criticality (SOC) is examined. We also consider some of the other heavy-tailed statistical distributions used to describe these data. Taking a broadly ecological perspective we suggest that this debate needs to take more interest in the mechanisms underlying the observed power-law (or other) statistics. From this perspective, future studies utilizing the techniques associated with CA and statistical physics will be better able to contribute to the understanding of ecological processes and systems.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.