US-IALE 2009: CHANS Workshop

Coupled Human and Natural Systems (CHANS) research is all about relationships – that seemed to be one of the main conclusions of the Challenges and Opportunities in Research on Complexity of Coupled Human and Natural Systems workshop at the US-IALE meeting in Snowbird, UT. The processes of identifying relationships between system elements and fostering them between researchers are key to realizing successful CHANS research. The workshop followed-up on a symposium in which principle investigators from several NSF-funded CNH projects presented their work, and was an opportunity to ask questions that went unasked during that symposium. The workshop was also the kick-off event for the CHANS-Net website.

In my notes below I have not identified individual workshop participants, both because I may have mis-interpreted their actual opinions or thoughts, but also because in some cases I can’t identify from my notes who said what. The workshop started with a panel discussion (the panel composed of the symposium speakers) followed by break-out groups to continue the discussion.

The first question from the audience asked how the panel approaches the dichotomy between abstract and contextualised research. Just as many dichotomies are false, it seems this one is also not always appropriate. For example, one response was that just because we can explain some characteristic about a specific place does not mean we didn’t use any theory whilst arriving at that explanation. Talking to local people can generate interesting, if contextualised, questions and one panel member highlighted the usefulness of ‘stakeholder steering groups’ (composed of local decision-makers and actors) to identify diverse opinions and direct research in ways that may not have happened otherwise. Another suggestion was that communication tools (such as role-playing, hypothetical scenarios, model output, etc.) are useful as a starting point for discussion, even if the theory underlying those tools is not discussed. To summarise the responses to this question I’ll paraphrase one of the panel members; ‘it was Louis Pasteur that said the question is not about whether the science is abstract or applied, but whether it is good science or bad science’.

A subsequent question along similar lines touched on the interplay of theory and practice; “what happens when your research proposal does not match ‘messy reality’? How do you explain why you ended up doing what you did do [to the people that accepted your proposal]?”. No original research goes entirely to plan – as some famous scientist once said; ‘if we knew what we were doing, it wouldn’t be called research’. In reality, there is always ‘wriggle-room’ in resolving this issue – if you start with a broad question it is easier to stay with a research theme even if the details get modified. Similarly, it is useful to make sure your research question is more important than the place where you will address that question. One panel member described how a research project they worked on needed to change the country in which is was situated. By focusing on the general research question they were able to negotiate this seemingly insurmountable problem. Other respondents from the panel got into more ‘messy’ details about the execution of such research. For example, in a project that involved both social and physical scientists there was initially confusion about how the two different types of scientists perceived and undertook measurements. A useful suggestion was to read your colleagues synthesis/review papers from other disciplines or backgrounds. Through commitment and patience in working together, an objective should be to identify a common language between researchers that can then push the research goals forward. Again, the importance of relationships was stressed.

An issue that came up both in response to this theory versus practice question, and frequently throughout the workshop, was the importance of good project management. One panel member suggested that an individual needs to be designated with the task of keeping the project on timeline, and that this person may need to take tough decisions (e.g. to drop researchers from the project) if deadlines or standards are not met. Finally, changing research can be a healthy thing – there will be frequent opportunities to extend research in new directions because new questions will arise as understanding develops. We shouldn’t be afraid to pursue those new directions.

One participant wanted to talk about fields that remain under-represented in CHANS current projects. They asked; “what about landscape architects and other ‘professional’ individuals?” A variety of missing experts and knowledge were suggested: the built environment, technology, environmental psychology, historians, political scientists, and communications experts (cartographers, public relations consultants, etc.) amongst others. The need for greater engagement and strengthening of relationships with political scientists seemed to be particularly important to several participants: under what conditions does a policy succeed or fail? How do we achieve good governance of the systems being studied? The US EPA (for example) are making decisions all the time – how are CHANS researchers engaging and influencing them?

Another workshop participant suggested that the presentations in the symposium had highlighted several different ways to conceive the relationship of humans with their environment, from ‘invaders’ to ‘managers’ to ‘components’. “How do we cross the boundaries between these different conceptualizations?” The first respondent suggested that researchers tend to pick a perspective (on the relationship between humans and their environment) and stick with it throughout their research – a better approach might be to consider different perspectives within the same project. However, the discussion quickly moved on to address the entire concept of ‘coupled’ human-natural systems. Several panel respondents voiced concerns about the coupling metaphor – one suggested that (human-natural) systems are not coupled, rather there is just one system. Another highlighted how the US perspective [remember this was the US-IALE meeting] on the human-nature relationship is rather unique – Europeans arrived with ideas of wilderness, protection and exploitation which differ from those in other places. Many of our ideas about how humans are related to their environment, one panel member suggested, likely stem from the Judeo-Christian philosophy which states that man was given dominion over nature. During the development of that philosophy humans got separated [in their minds?] from ecosystems and a difference soon emerged between a perspective in which humans rightly dominate nature versus one in which humans are viewed as being part of nature [which might be more consistent with Eastern religions such as Taoism or Buddhism].

To conclude the panel discussion someone asked; “what direction does CHANS research need to go in?” I thought the most interesting response was that CHANS research should be about easing transitions between different environmental conditions, and not trying to stop those transitions. The speaker suggested that CHANS research needs to focus on the sustainability of communities in the face of environmental transitions, adopting a perspective closely aligned with the view that humans are a part of nature rather than a controller of nature. A second respondent (possibly a geographer) identified the problem of scale. Whilst pretty much every presentation in the symposium contained a ‘spider diagram’ depicting a system as arrows linking boxes of elements, scale didn’t figure much. Yet, the respondent argued, all the systems presented were to some degree scale-dependent (but note there are cases where scale-invariant behaviour is manifest [.pdf]).

The workshop then broke up into groups to discuss some the issues outlined above in more detail. Correspondingly, there was plenty of feedback when the groups re-convened. Put in the most simple terms, our group decided that there are four things that characterize CHANS research:

  1. It is hard (e.g. issues of coupling systems, scaling, policy work, management, interdisciplinarity, and many more)
  2. It’s all about relationships (both in the systems of study and between the researchers studying those systems)
  3. Face-to-face interaction is key (between researchers themselves, and between researchers and other stakeholders – policy makers, managers and importantly the people in the systems and places being studied)
  4. It takes time (because of all of the above)

This last point was emphasized in several places; it takes time to generate links between disciplines. And it can be frustrating. For CHANS research to be successful, one of the key steps is to identify individuals that are willing to make the same leap across a disciplinary divide that you want to. CHANS researchers aren’t alone in having these kinds of discussions right now, and there are lessons to be learned from many different groups investigating the web of human-environment relationships. That’s where the workshop ended in Utah, but no doubt the discussion about relationships will continue – possibly in forums like that offered by CHANS-Net.

US-IALE 2009: Overview and Fire

Last week I was at 2009 US-IALE in Snowbird, Utah. It was a great meeting; my presentations went down well, I participated in two stimulating symposia and a statistics workshop, heard interesting presentations that spanned a range of subjects, made new friends, talked about potential collaborations and even found time at the end of the week for a spot of Spring snowboarding. There was so much going on that I’m going to devote two other blog posts to the ‘Complexity in Human-Nature Interactions across Landscapes’ symposium and the ‘Global Land Project Symposium on Agent-Based Modeling of Land Use Effects on Ecosystem Processes and Services’.

The conference plenary, entitled ‘Facilitating the Conduct of Naturally Humane and Humanely Natural Research’, was given by Thomas Baerwald, Senior Science Advisor at the National Science Foundation. In-keeping with his position, Baerwald dealt with several issues related to the execution of coupled human-natural type research, from the scientific or policy questions that need to be addressed to the mechanics of putting together a research team or proposal. Broadly, his comments could be interpreted (respectively) as i) CHANS research needs to provide a better understanding of the processes underlying observed dynamics, and ii) that effective teamwork (including developing a common language between researchers from diverse backgrounds) are required in the interdisciplinary research projects his department funds. Many questions and issues raised in the plenary were later addressed in the Complexity in Human-Nature Interactions symposium.

Two areas of research caught my attention in the Fire and Landscapes session. First was the ongoing work of Don McKenzie and his PostDoc Maureen Kennedy at USFS. Don has been examining the mechanisms behind scaling laws in wildfire regimes such as those I worked on during my Masters with Bruce Malamud. In particular, Don and Maureen are trying to determine whether scaling relationships like the power-law frequency-area wildfire distribution arise from physical mechanisms or are numerical artifacts of the way data are quantified.

In his presentation Don proposed that topographic controls on fire spread are the underlying driver for more proximate mechanisms that govern the observed scaling relationships. Maureen then demonstrated how they used a raster-based neutral model for fire history to generate fire history patterns to examine this. Using the neutral model, Maureen has found the expected value of Sorensen distance (a metric for fire co-occurrence between pairs of trees) depends both on the probability two trees are both in a given fire, and on the probability a tree that is in a fire records that fire with a scar [this is important given much wildfire regime data come from paleorecords of wildfire scars]. In turn, this is related to the topographic complexity of the simulated landscape.

In conclusion, Don suggested that “the search for mechanisms behind scaling laws in landscape ecology may be fruitful only when the scope of observed phenomena is sufficiently local to be in the domain of a contagious process… Power laws and other scaling relationships at broader scales, even if not simply numerical artifacts, are likely to be phenomenological in nature rather than governed by identifiable mechanisms.” Thus, Don is arguing against trying to find mechanisms driving broad-scale patterns in wildfire regimes like those Bruce Malamud, George Perry, and I found for the ecoregions of the conterminous USA. The neutral model approach is certainly appealing and provides a definitive way to test the importance of a variety of variables. We’ve stalled lately on following-up on our PNAS paper, but the work Don and Maureen are tackling definitely provides some food for thought.

The second area of fire research that interested came from a distinctly different background. Francisco Seijo Maceiras discussed the governance of wildfire regimes. Following-up on previous work, Francisco developed the idea that the disruption of ‘Pre-Industrial Anthropogenic Fire Regimes’ (PIAFRs) – and the livelihoods and lifestyles of the social groups that generated them – is an important factor in changes in wildfire regimes in recent decades. Using Spain as an example, Francisco argues that changes in understanding regarding the ecological role of wildfire in landscapes (e.g. see Perry 2002) “provides an excellent opportunity for both re-enfranchising local communities regarding fire use and improving fire management.” I am no expert in the history of Spanish wildfire policy but I can certainly see potential uses of my Landscape Fire Succession Model I to examine potential consequences of a change in wildfire management strategies from top-down, state-organised management towards those favoured by local community fire practitioners.

In another session I happened to drop in on, Virginia Dale gave an interesting presentation on climate change, land-use change, and energy use. What specifically caught my attention was her discussion of the use of the net environmental benefit framework for landscape ecologists to explore the land and water resource effects climate change and different energy options might bring. Papers will be appearing with more on that soon I believe.

On the final day of the meeting I attended the bayesian statistics workshop led by Mevin Hooten from Utah State University. The introduction looked at hierarchical models and the difference between forward models (e.g. forest simulation modelling: set the parameters, run the model, look at the data produced) and inverse model (e.g. linear regression: collect the data, think about how the process works, fit the parameters). Bayesian modelling is inverse modelling that uses conditional probability: first we specify a stochastic model that explains where the data come from (i.e. a likelihood) and a stochastic model for the parameters (i.e. a prior), then we fit the model by finding the posterior distribution of the parameters give the data. That’s a very simplified explanation of the approach and the workshop proceeded to get technical. What re-affirmed my determination to experiment with this approach in the future were the examples Mevin’s graduate students provided: Ephraim Hanks presented his work and a tutorial on the prediction of dwarf mistletoe incidence in Black Spruce stands of Northern Minnesota using Bayesian methods, and Ryan Wilson presented his work and a tutorial that used Bayesian methods to examine uncertainty, and multi-scale clustering in core area (habitat) characterisation of a variety of mammals (hopefully forthcoming in Ecology).

Even without my notes on the comments on the ‘Complexity in Human-Nature Interactions across Landscapes’ symposium and the ‘Global Land Project Symposium on Agent-Based Modeling of Land Use Effects on Ecosystem Processes and Services’ this has turned into a long blog post. There really was a lot on at the US-IALE this year. I hope to post on those symposia very soon.

A Companion to Environmental Geography: Brief Review

A couple of weeks ago I received my copy of ‘A Companion to Environmental Geography‘ to review for Progress in Physical Geography. I’m still working my way through the edited volume’s diverse material, and on the review, but I thought I’d post a brief outline here along with a few thoughts.

The diversity of issues and approaches demonstrated in the Companion is a result of both the editors’ objectives to demonstrate the size, breadth and multiplicity of geographical work at the people-environment interface, and definition of environmental geography; “any form of geographical inquiry which considers formally some element of society or nature relative to each other” (p.6). The chapters address issues ranging from ‘Complexity, Chaos and Emergence’ and ‘Uncertainty and Risk’, through ‘Landscape, Culture and Regional Studies’ and ‘Ecosystem Prediction and Management’ to ‘Marxist Political Economy and Environment’ and ‘Environmental Discourse and Representation’.

The editors’ broad definition of Environmental Geography is, in part, a response to the increasing specialisation of science in general and geography specifically. Their definition is also a result of the perceived need to think more clearly about the relationships between the sub-discplines of geography rather than just the simple human/physical dichotomy, as I have discussed previously. Increasing research specialisation has resulted in a growing irrelevance of (and difficulty of achieving) the traditional view of ‘symmetric’ Environmental Geography in which both humans and their environment receive equal attention and treatment. Research in contemporary Environmental Geography is largely asymmetrical (i.e., research focus is generally more on either the human or environmental dimension) as demonstrated by the many of the chapters in the Companion.

Such a broad definition also allows the emphasis of what is seen as a traditional strength of Geography – the possibility of multiple diverse approaches to examine human-environment interactions. Indeed, editors Castree, Demeritt, Liverman and Rhoads suggest that “Environmental Geography’s plurality can make it a player in such grand endeavours [as addressing global environmental chage and sustainability] yet without sacrificing its capability to offer multiple insights and perspectives on human-environment relations” (p.12). A player it may be, but other human-environment researchers are now arguing that their more systematic approaches move beyond Environmental Geography and, as Billie L. Turner’s chapter highlights, the geography is no longer necessarily the primary domain of the study of coupled human-environment systems; “the immediate future appears to be one in which geographic practitioners of land systems are drawn increasingly into integrative science programmes, while geograghic pedagogy, more so than at any other time in the past, opens to practitioners from beyond the formal discipline” (p.174).

The Companion, is certainly more than a Dictionary – each of the 32 chapters following the introduction from the editors provides an introduction to key ideas, methods and debates that will be accessible to advanced undergraduates and beyond. The chapters are divided into four sections – Concepts, Approaches, Practices, and Topics – some tackling questions at the cutting edge (e.g., what are the interlinked social and environmental implications of commodifying nature, and of commodification more generally?), some calling for advances or changes in perspective (e.g., current consideration of uncertainty and risk is a facade on deterministic approaches) and others providing more benign, yet no less stimulating, introductions to the issues. Such is the diversity of human-environment issues covered that not all chapters will be of interest to all readers. However, the book will be a useful reference for all scholars of human-environment interactions, whether to provide inspiration for potential research approaches or as a teaching tool to introduce students to the breadth of topics in Environmental Geography.

I’ll post again with a link to the final review once it’s published.

Buy at Amazon

US-IALE 2009: CSIS Activites

The US-IALE 2009 program has now been finalised and I’ve been perusing it to think about what I’ll be doing whilst there.

I expect most of my Monday will be spent at one of the special symposia, ‘Complexity in Human-Nature Interactions across Landscapes‘, organised by Jack Liu and Bill McConnell here at CSIS. The symposium has invited speakers from many CHANS projects, and will “present original and innovative research on the complexity in human-nature interactions across multiple scales (spatial, temporal, and organizational) and from a landscape perspective” [full abstract copied below]. The symposium is the ‘kick-off’ event for CHANS-Net and is also accompanied by a workshop on the Tuesday afternoon entitled ‘Challenges and Opportunities in Research on Complexity of Coupled Human and Natural Systems‘. The workshop will “facilitate more in-depth discussion on topics related to the [earlier] symposium” and will provide a forum for some interesting discussion.

Earlier on the Tuesday I think I might check out the ‘Expert Knowledge and Landscape Applications session which will address – amongst other things, but most interestingly for me – the specific roles of expert knowledge in developing, testing, parameterizing, and applying models.

Both of my presentations are on Wednesday morning – one after the other as it turns out. The first, is at 10.40am, draws on the agent-based modelling I initiated during my PhD and the second, at 11am, discusses the work I’ve been doing here at CSIS examining forest management in Michigan [abstracts here]. My first presentation is in the organised symposium ‘Global Land Project Symposium on Agent-Based Modeling of Land Use Effects on Ecosystem Processes and Services, which “will consider developments in coupled human-natural system modeling using agent-based simulation, from the perspective of land use effects on population dynamics and ecosystems processes and/or services at the landscape scale”. I’ll finish up the meeting by participating in the workshop Bayesian Methods for Landscape Ecologists.

Alongside Jack, Bill and I several CSIS PhD students will be at the meeting:

  • Mao-Ning Tuanmu will present ‘Characterizing Wildlife Habitat with Information on Vegetation Phenology Derived from Remotely Sensed Data’ on Monday at 1.20pm
  • Wei Liu ‘Impacts of Natural and Human Disturbances on the Long-term Survival of the Giant Panda Population in Wolong Natural Reserve, China’ on Tuesday at 10.40am
  • Nick Reo will present ‘Institutional and Citizen Level Relations in Tribal-State Cross-Boundary Management’ on the Wednesday at 8am.

And maybe once the meeting is done there will be even be time for a little bit of snowboarding…

Complexity in Human-Nature Interactions across Landscapes
This symposium fits perfectly with the theme of US-IALE2009. It will present original and innovative research on the complexity in human-nature interactions across multiple scales (spatial, temporal, and organizational) and from a landscape perspective. Examples of complexity include emergent properties, surprises, time lags, legacy effect, path dependence, heterogeneity, feedback loops, discontinuities, criticality, thresholds, nonlinearities, reciprocal interactions, and ripple effects. While humans and nature have interacted since the beginning of human history, unpacking the complexity in human-nature interactions remains a central challenge for the scientific community and for society to understand and achieve environmental and socioeconomic sustainability. An increasing number of scholars around the world have been exploring complexity of Coupled Human and Natural Systems (CHANS, see example reviews in Science 317: 1513-1516 (2007) and Ambio 36:639-649 (2007)), but much more work on CHANS complexity is required. This symposium will emphasize reciprocal interactions between human and natural systems, whereas many previous studies emphasized either human impacts on the environment or impacts of the environment on humans. Although not every presentation in this symposium can address every aspect of complexity, the symposium as a whole will constitute a nice collection of improvements in understanding complexity.

Global Land Project Symposium on Agent-Based Modeling of Land Use Effects on Ecosystem Processes and Services
One of the main themes of the Global Land Project concerns the understanding of the effects of human land use activities in altering the structure and functioning of terrestrial landscapes and ecosystems. Improved understanding of the decision making processes related to land use management provides the foundation for evaluating the interactions between factors influencing human activities and feedbacks within the coupled human-environment system. Modeling can contribute to better understanding of these systems. It is now generally accepted that to adequately understand the complex dynamics of landscapes, it is often necessary for models thereof to integrate the human social processes embedded within them. In so doing, a spectrum of approaches can be applied, from analytical through to narrative; quantitative to qualitative. In the social sciences, agent-based (akin to individual-based) modeling has been proposed as a ‘third way’: formal and yet descriptive in its representations. Agent-based modeling has been applied for some time now to the study of land use and cover change by various researchers. This symposium will consider developments in coupled human-natural system modeling using agent-based simulation, from the perspective of land use effects on population dynamics and ecosystems processes and/or services at the landscape scale. It is thus directly relevant to the broader US-IALE conference theme of Coupling Humans and Complex Ecological Landscapes. We will be inviting papers on the following topics, among others, with a view to showcasing the various ways in which agent-based modeling can contribute to the an integrated understanding of the social and the ecological: Case studies of agent-based modeling in natural resource management and policy; Calibrating and validating coupled agent-based/ecosystem models; Developing theory using reduced form/conceptual agent-based models; Disseminating agent-based models to the scientific community and beyond; Lessons for and critiques of ABM from other efforts in coupled SES modeling.

PEST or Panacea?

Although some may say blogging is dead, the editors at Nature think it’s good to blog. The Nature editors discuss the place of blogging in scientific discourse, focusing on the reporting of results from papers in press (i.e. accepted by a journal for publication but not actually in print yet). They suggest that if the results of an article in press are reported at a conference then they are fair game for discussion and blogging. And they argue that “[m]ore researchers should engage with the blogosphere, including authors of papers in press”.

I wish I had more papers in the in press pile. Unfortunately I’ve got more in the under review pile (see my previous post), but at least I’m adding to it. Earlier this week David Demeritt, Sarah Dyer and I submitted a manuscript to Transactions of the Institute of British Geographers. The paper discusses public engagement in science and technology and examines some of the practical challenges such a collaboration entails. One of the examples we use is the work I did during my PhD examining the communication of my model results with local stakeholders. It’s only just submitted so I’ll just post the abstract for now. As we get further along the review process toward the in press stage (with this and other papers) I’ll return to see if we can spark some debate.

David Demeritt, Sarah Dyer and James Millington
PEST or Panacea? Science, Democracy, and the Promise of Public Participation
Submitted Abstract
This paper explores what is entailed by the emerging UK consensus on the need for increased public engagement in science and technology, or PEST as we call it. Common to otherwise incompatible instrumental and de-ontological arguments for PEST is an associated claim that increased public engagement will also somehow make for ‘better’ science and science-based policy. We distinguish two different ways in which PEST might make such a substantive contribution, which we term ‘normative steering’ and ‘epistemic checking’. Achieving those different aims involves engaging with different publics in different ways to different ends. Accordingly, we review a number of recent experiments in PEST to assess the practical challenges in delivering on its various substantive promises. The paper concludes with some wider reflections on whether public engagement in science is actually the best way of resolving the democratic dilemmas to which PEST is addressed.

US-IALE 2009: Abstracts

The two abstracts I submitted to US-IALE 2009 have been accepted for (oral) presentation at the meeting. I’ll be presenting both on the work I’ve been doing here at CSIS and from my PhD. I’ve copied the initial abstracts below (these may change slightly) and I’ll post a full list of what everyone in CSIS is up to at the conference nearer the time. See you in Snowbird!

Modeling Interactions of Human and Natural Disturbances in a Managed Forest Landscape

James D.A. Millington, Michael B. Walters, Megan S. Matonis, Frank Lupi, Susan Chen, Kimberly R. Hall, Edward J. Laurent, Jianguo (Jack) Liu

As is often the case for coupled human and natural systems, the interactions between human and natural forest disturbances have the potential to produce complex system behavior. Spatially-explicit ecological-economic modeling provides a useful tool to investigate these phenomena in an integrated manner, revealing patterns and processes not observable by investigating the social and natural components separately. We present the development and initial results from such a model that examines the complex interactions among timber harvest, white-tailed deer browse and vegetation dynamics in a managed forest landscape in Michigan’s Upper Peninsula. This landscape has been experiencing low tree regeneration due to overabundant white-tailed deer, and changes in habitat for songbirds of conservation concern due to deer impacts and timber harvesting.

The multi-scale model uses input data on deer population, forest stand structure, tree regeneration, forest cover, habitat type and land ownership data collected at plot, stand, and landscape levels. Vegetation establishment, regeneration and growth are simulated using the USFS Forest Vegetation Simulator (FVS). Deer browse impacts are represented in FVS and parameterized by data we have collected on deer density and forest gap regeneration. As is common for many studies, our stand-level data for model initialization are incomplete across the 4,000 km2 study area. We show how we impute our stand-level data across the remainder of the study area using auxiliary variables including topography and remotely-sensed land cover.

Results show that distance to nearest lowland conifer stand, mean stand tree diameter-at-breast-height and the proportion of hardwood species in the surrounding local area are statistically significant predictors of deer density across the landscape (p < 0.01). These variables alone explain 40% of variance in deer density. Our initial model simulation results indicate complex spatial interactions between deer densities, stand structure and timber values across the managed forest landscape.

Investigating the Interaction of Land Use/Cover Change and Wildfire using Agent-Based Modelling
(Global Land Project symposium on agent-based modelling of land use effects on ecosystem processes and services)

James D.A. Millington, John Wainwright, Raul Romero-Calcerrada, George L.W. Perry and David Demeritt

Humans have a long history of activity in Mediterranean Basin landscapes. Spatial heterogeneity in these landscapes hinders understanding about the impacts of changes in human activity on ecological processes, such as wildfire. We present an Agent-Based Model (ABM) of agricultural land-use decision-making. This model is integrated with a spatially-explicit, state-and-transition Landscape Fire-Succession Model (LFSM) to investigate the relative importance of anthropic and ecological drivers of the wildfire regime.

The ABM considers two ‘types’ of land-use decision-making agent with differing perspectives; ‘commercial’ agents that are perfectly economically rational, and ‘traditional’ agents that represent part-time or farmers that manage their land because of its cultural, rather than economic, value. Results from the ABM indicate that land tenure configuration influences trajectories of land use change. However, simulations for various initial land-use configurations and compositions converge to similar states when land-tenure structure is held constant. For the scenarios considered, mean wildfire risk increases relative to the observed landscape.

The LFSM uses plant functional types to represent spatial and temporal competition for resources (predominantly water and light) in a rule-based modelling framework. Wildfire behaviour is represented using a cellular-automata approach. Results from the integrated ABM-LFSM indicate that fires ignited by human causes burned greater areas of shrubland than would be expected at random, and modelled lightning fires burned greater areas of forest land-cover types than would be expected at random.

We conclude by discussing our efforts to achieve a form of ‘stakeholder model validation’. This evaluation process involved taking the model and its results back for examination by the agricultural actors and decision-makers that aided our model conceptualization. We put this discussion in the context of recent calls for increased engagement between science and the public, highlighting some of the problems we encountered with this form of model evaluation.

Publishing in Geography

Got a Geography paper you want to publish? You would do well to read the RGS guide to publishing in Geography. In fact, it’s got some good tips for anyone wanting to learn more about publishing in academia. And if you really aren’t bothered about academia or publishing you should still check it out because it has one of the nicest online document readers I’ve seen in a while.

Reading the RGS guide gave me the idea that maybe I should write up my blog on David Demeritt’s TIBG Boundary Crossing piece for submission as a commentary. So I’ve been reading and thinking about that and will hopefully have something submitted in February. I’ve also been asked to help re-write the Human Decision-Making chapter of Wainwright and Mulligan’s Environmental Modelling ready for its second edition. I’ll be working on that throughout 2009.

Other things I’ve been working on recently are the spatial deer density modelling manuscript (in draft) and the Deer browse/mesic conifer planting experiment (also in draft). I’ve nearly compled the revisions for the paper on my Landscape Fire Succession Model and should be able to return it to EMS soon. The Mind, the Gap paper still isn’t back from the reviewers, and who knows when I’ll ever get round to looking at the narratives paper again.

Not this weekend that’s for sure – Saturday is paper revisions and then on Sunday we’re heading north to our Michigan UP study area to meet with the timber companies (Plum Creek and American Forest Management) that have helped us with our fieldwork over the last two summers. Between the meetings we’ll drive through the study area and maybe jump out at one or two of our sites to take a look at them in the winter snow. I’ve been up there during Spring, Summer and Autumn, so this trip will check off my final season. I’ll take my camera and hopefully have a few pictures to post here next week.

Geographical Perspectives: Externalities, Inputs and Participation

One of the most enjoyable things about studying as a post-graduate in a UK Geography department was the diversity of conversation topics I could get myself into in the corridors, over lunch, and after work in the pub. Investigating social, economic, cultural, atmospheric, geomorphological, and ecological patterns and processes (too name just a few) geography departments contain scholars with interests and skills that span the globe’s physical and social environments. This variety of backgrounds and worldviews can lead to widely differing perspectives on the current affairs of any particular day.

In many ways my PhD studies, funded by an interdisciplinary research studentship from the ESRC and NERC, allowed (demanded?) me to search out these differing perspectives and engage in these conversations. However, this diversity of perspectives isn’t appealing for faculty members focused narrowly on their own particular research specialism and the current paper they are writing about it. Maybe they just don’t have time. Or maybe there’s something deeper.

The distinction between the social sciences (human geography) and natural sciences (physical geography) has led to somewhat of a divide between these two ‘sides’ of Geography. As my former tutor and advisor Prof. David Demeritt highlights in the latest volume of the Transactions of the Institute of British Geographers, ‘human’ and ‘physical’ geographers have become so estranged that dedicated forums to initiate ‘conversations across the divide‘ of Geography now occur regularly at annual conferences. Demeritt’s article discusses how ‘Environmental Geography’ is often touted as having the integrative research potential to bridge the human-physical divide.

Environmental Geography (EG) explicitly sets out to examine human-environment interactions and is generally understood to be the intersection of Human and Physical in the Geography Venn diagram. Essentially, EG is the Geographical version of the Coupled Human and Natural Systems (CHANS) research program that has become prominent recently largely thanks to NSF funding. Whereas CHANS emphasises systemic concepts (thresholds, feedbacks, resilience etc.), EG emphasises concepts more at home in the geographical lexicon – scale, space and (seemingly most often absent from CHANS research) place. This is not to say that these concepts are exclusively used by either one or the other – whether you do ‘CHANS research’ or ‘Environmental Geography’ is also likely to be determined by where your research funding comes from, what department you work in, and the type or training you received in graduate school.

One of the main points Demeritt makes in his commentary is that this flat distinction between Human and Physical Geography is not as straight forward as it is often made out to be. Friedman’s world may be flat, but the Geography world isn’t. Demeritt attempts to illustrate this with a new diagramtic 3D representation of the overlap between the many sub-disciplines of Geography (most of which are also academic disciplines in their own right):

Demeritt's 2008 three dimensional interpretation of the relationship between sub-disciplines in Geography
Thus, “Rather than thinking about geography just in terms of a horizontal divide between human and physical geography, we need to recognise the heterogeneity within those very broad divisions. …within those two broad divisions geography is stretched out along a vertical dimension. … Like the fabled double helix, these vertical strands twist round each other and the horizontal connections across the human-physical divide to open up new opportunities for productive engagement.” [p.5]

This potential doesn’t come without its challenges however. Demeritt uses EG to demonstrate such challenges, highlighting how research in this field is often ‘framed’. ‘Framing’ here refers to the perspective researchers take about how their subject (in this case interactions between humans and the natural environment) will be (should be) studied. Demeritt highlights three particular perspectives:

1. The Externality Perspective. This perspective might be best associated with the reductionist mode of scientific investigation, where a specific component of a human-environment system is considered in isolation from any other components. Research disregards or ignores other work in sub-disciplines, whether horizontally across the human-physical divide or vertically either side, and concentrates on understanding a specific phenomena or process.

2. The Integrated Perspective. We might think of this perspective as being loosely systematic. Rather than simply ignoring the connections with other processes and phenomena considered in other sub-disciplines, they are used as some form of ‘input’ to the component under particular consideration. This is probably the mode that most closely resembles how much CHANS research is currently done, and how most ‘interdisciplinary’ environmental research is currently done.

3. The Participatory Perspective. This third approach has become more prominent recently, associated with calls for more democratic forms of science-based decision-making and as issues expertise and risk have come to the fore in environmental issues. This mode demands scientists and researchers become more engaged with publics, stakeholders and decision-makers and is closely related to the perspective of ‘critical’ geography and proponents of ‘post-normal’ science.

Demeritt discusses the benefits and challenges of these approaches in more detail, as I have briefly touched on previously. Rather than go over them again, here I want to think a bit more about the situations in which each of these modes of research might be most useful. In turn, this will help us to think about where engagement with other disciplines and sub-disciplines will be most fruitful.

One situation in which the externality perspective would be most useful is when the spatial/temporal scope of the process/phenomena of interest makes engagement between (sub-)disciplines either useless or impossible. For example, reconciling economic or cultural processes with Quaternary research is likely to extraordinarily difficult (but see Wainwright 2008). A second would be when investigation is interested more in ‘puzzle solving’ than ‘problem-solving’. For example, with regards research on Northern Hardwood Forests the puzzler would ask questions like ‘what is the biological relationship between light availability and tree growth?’ whereas the problem-solver might ask ‘how should we manage our timber harvest to ensure sufficient light availability allows continued regeneration of younger trees in the forest understory?’.

The integrated approach has often been used in the situation when one ‘more predictable’ system is influenced by another ‘less predictable’ system. One system might be more predictable than another because more data are available for one than another, because less assumptions are invoked to ‘close’ one system for study than another, or simply because the systems are perceived to be more or less predictable. A prime example is the use of scenarios of global social end economic change to set the parameters of investigations of future climate change (although this example may actually have slowed problem-solving rather than sped it).

The participatory perspective will be useful when system uncertainties are primarily ethical or epistemological. Important questions here are ‘what are the ethical consequences of my study this phenomena?’ and ‘are sufficient theoretical tools available to study this problem?’. Further, in contrast to the externality mode, this approach will be useful when investigation is interested in ‘problem-solving’ rather than ‘puzzle solving’. For example, participatory research will be most useful when the research question is ‘how do we design a volcano monitoring system to efficiently and adequately alert local populations such that they can/will respond appropriately in the event of an eruption?’ rather than ‘what are the physical processes in the Earth’s interior that cause volcanoes to erupt when they do?’

Implicit in the choice of which question is asked in this final example is the framing of the issue at hand. Hopefully it is clear from my brief outline that it is a close relationship between research objectives and the framing or mode of the research. How these objectives and framings are arrived at is really at the root of Demeritt’s commentary. Given the choice, it will be easy for many researchers to take the easy option:

Engaging with other perspectives and approaches is not just demanding, but also risky too. … Progress in science has always come precisely from exposing ourselves to the possibility of getting it wrong or that things might not work out quite as planned’. [p.9]

Thinking clearly about the situations in which different modes of study are most useful might help save both embarrassment and time. Further, it also seems sensible to suggest that most thought should be done when researchers are considering engaging non-scientists in the participatory mode. If it is risky to expose ones self to fellow scientists, who understand the foibles of the research process and the difficulties of grappling with new ideas and data sets, it will be even more risky when the exposure is to non-scientists. Decision-makers, politicians, ‘lay persons’ and the general public at large are likely to be less acquainted with (but not ignorant of) how research proceeds (messily), how knowledge is generated (often a mixture of deductive proofs and inductive ideas), and the assumptions (and limitations) implicit in data collection and analysis. So when should academics feel most confident about parachuting in from the ivory tower?

First, it seems important for scientists to avoid telling people things they already ‘know’. Just because it hasn’t been written down in a scientific journal doesn’t mean it isn’t known (not that I want to get into discussion here about when something becomes ‘known’). We should try very hard to work out where help is needed to harness local knowledge, rather than ignoring it and assuming we know best (this of course harks back to the third wave). For example, while local farmers may know a lot about the history and consequences of land use/cover change in their local area, they may struggle to understand how land use/cover change will occur, or influence other processes, over larger spatial extents (e.g. landscape connectivity of species habitat or wildfire fuel loadings). In other situations, local knowledge may be entirely absent because a given phenomena is outside the perception/observation of the local community. In this case, it will be very difficult (or impossible) for them to contribute to knowledge formation even though the phenomena affects them. For example, the introduction of genetically modified crops will potentially have impacts on other nearby vegetation species due to hybridization, yet the processes at work are at a scale that is unobservable to lay persons (i.e genetic recombination at the molecular level versus farmland biodiversity at the landscape level).

The important point in all this however (as it occurs to me), seems to be that the ‘framing’ one researcher or scientist adopts will depend on their particular objectives. If those objectives are of the scientific puzzle-solving kind, and can be framed so that the solution can be found without leaving the comfy environment of a single sub-discipline, engagement will not happen (and neither should it). The risks it poses means that engagement will happen only if funding bodies demand it (as they increasingly are) or if the the research is really serious about solving a problem (as opposed to solving a puzzle or simply publishing scientific articles). As the human population grows within a finite environment the human-environment interface will only grow, likely demanding more and more engaged research. As I’ve highlighted before, a genuine science of sustainability is more likely to succeed if it adopts an engaged, participatory (post-normal) stance toward its subject.

Engaging researchers from other (sub-)disciplines or non-scientists will not always be the best option. But Geography and geographers are well placed to help develop theory and thinking to inform other scientists about how to frame environmental problems and establish exactly when engaging with experts (whether certified or not) from outside their field, or even from outside science itself, will be a fruitful endeavour. Geographers will only gain the authority on when and how interdisciplinary and participatory research should proceed once they’ve actually done some.

Demeritt, D. (2008) From externality to inputs and interference: framing environmental research in geography Transactions of the Institute of British Geographers 34(1) 3 – 11
Published Online: 11 Dec 2008
doi:10.1111/j.1475-5661.2008.00333.x

Modelling Pharmaceuticals in the Environment

On Friday I spoke at a workshop at MSU that examined a subject I’m not particularly well acquainted with. Participants in Pharmaceuticals in the Environment: Current Trends and Research Priorities convened to consider the natural, physical, social, and behavioral dimensions regarding the fate and impact of pharmaceutical products in the natural environment. The primary environmental focus of this issue is the presence of toxins in our water supply as a result of the disposal of human or veterinary medicines. I was particularly interested in what Dr. Shane Synder had to say about water issues facing Las Vegas, Nevada.

So what did I have to do with all this? Well the organisers wanted someone from our research group at the Center for Systems Integration and Sustainability to present some thoughts on how modelling of coupled human and natural systems might contribute to the study of this issue. The audience contained experts from a variety of disciplines (including toxicologists, chemists, sociologists, political scientists) and given my limited knowledge about the subject matter I decided I would keep my presentation rather broad in message and content. I drew on several of the topics I have discussed previously on this blog: the nature of coupled human-natural systems, reasons we might model, and potential risks we face when modelling CHANS.

In particular, I suggested that if prediction of a future system state is our goal we will be best served focusing our modelling efforts on the natural system and then using that model with scenarios of future human behaviour to examine the plausible range of states the natural system might take. Alternatively, if we view modelling as an exclusively heuristic tool we might better envisage the modeling process as a means to facilitate communication between disparate groups of experts or publics and explore what different conceptualisations allow and prevent from happening with regards our stewardship or management of the system. Importantly, in both cases the act of making our implicitly held models of how the world works explicit by laying down a formal model structure is the primary value of modelling CHANS.

There was brief talk towards the end of the meeting about setting up a workshop website that might even contain audio/video recordings of presentations and discussions that took place. If such a website appears I’ll link to it here. In the meantime, the next meeting I’ll be attending on campus is likely to be the overview of Coupled Human-Natural Systems discussion in the Networking for Environmental Researchers program.