Creating a Genuine Science of Sustainability

Previously, I wrote about Orrin Pilkey and Linda Pilkey-Jarvis’ book, Useless Arithmetic: Why Environmental Scientists Can’t Predict the Future. In a recent issue of the journal Futures, Jerome Ravetz reviews their book alongside David Waltner-Toews’ The Chickens Fight Back: Pandemic Panics and Deadly Diseases That Jump From Animals to Humans. Ravetz himself points out that the subject matter and approaches of the books are rather different, but suggests that “Read together, they provide insights about what needs to be done for the creation of a genuine science of sustainability”.

Ravetz (along with Silvio Funtowicz) has developed the idea of ‘post-normal’ science – a new approach to replace the reductionist, analytic worldview of ‘normal’ science. Post-normal science is a “systemic, synthetic and humanistic” approach, useful in cases where “facts are uncertain, values in dispute, stakes high and decisions urgent”. I used some of these ideas to experiment with some alternative model assessment criteria for the socio-ecological simulation model I developed during my PhD studies. Ravetz’s perspectives toward modelling, and science in general, shone through quite clearly in his review:

“On the philosophical side, the corruption of computer models can be understood as the consequence of a false metaphysics. Following on from the prophetic teachings of Galileo and Descartes, we have been taught to believe that Science is the sole and certain path to truth. And this Science is mathematical, using quantitative data and abstract reasonings. Such a science is not merely necessary for achieving genuine knowledge (an arguable position) but is also sufficient. We are all victims of the fantasy that once we have numerical data and mathematical argument (or computer programs), truth will inevitably follow. The evil consequences of this philosophy are quite familiar in neo-classical economics where partly true banalities about markets are dressed up in the language of the differential calculus to produce justifications for every sort of expropriation of the weak and vulnerable. ‘What you can’t count, doesn’t count’ sums it all up neatly. In the present case, the rule of models extends over nearly all the policy-relevant sciences, including those ostensibly devoted to the protection of the health of people and the environment.

We badly need an effective critical philosophy of mathematical science. … Now science has replaced religion as the foundation of our established order, and in it mathematical science reigns supreme. Systematic philosophical criticism is hard to find. (The late Imre Lakatos did pioneering work in the criticism of the dogmatism of ‘modern’ abstract mathematics but did not focus on the obscurities at the foundations of mathematical thinking.) Up to now, mathematical freethinking is mainly confined to the craftsmen, with their jokes of the ‘Murphy’s Law’ sort, best expressed in the acronym GIGO (Garbage In, Garbage Out). And where criticism is absent, corruption of all sorts, both deliberate and unaware, is bound to follow. Pseudo-mathematical reasonings about the unthinkable helped to bring us to the brink of nuclear annihilation a half-century ago. The GIGO sciences of computer models may well distract us now from a sane approach to coping with the many environmental problems we now face. The Pilkeys have done us a great service in providing cogent examples of the situation, and indicating some practical ways forward.”

Thus, Ravetz finds a little more value in the Useless Arithmetic book than I did. But equally, he highlights that the Pilkeys offer few, rather vague, solutions and instead turns to Waltner-Toews’ book for inspiration for the future:

Pilkey’s analysis of the corruptions of misconceived reductionist science shows us the depth of the problem. Waltner-Toews’ narrative about ourselves in our natural context (not always benign!) indicates the way to a solution.”

Using the outbreak of avian flu as an example of how to tackle complex environmental in the ‘risk society’ in which we now live, Waltner-Toews:

“… makes it very plain that we will never ‘conquer’ disease. Considering just a single sort of disease, the ‘zoonoses’ (deriving from animals), he becomes a raconteur of bio-social-cultural medicine …

What everyone learned, or should have learned, from the avian flu episode is that disease is a very complex entity. Judging from TV adverts for antiseptics, we still believe that the natural state of things is to be germ-free, and all we need to do is to find the germs and kill them. In certain limiting cases, this is a useful approximation to the truth, as in the case of infections of hospitals. But even there complexity intrudes … “

Complexity which demands an alternative perspective that moves beyond the next stage of ‘normal’ science to a post-normal science (to play on Kuhn’s vocabulary of paradigm shifts):

“That old simple ‘kill the germ’ theory may now be derided by medical authorities as something for the uneducated public and their media. But the practice of environmental medicine has not caught up with these new insights.

The complexity of zoonoses reflects the character of our interaction with all those myriads of other species. … the creatures putting us at risk are not always large enough to be fenced off and kept at a safe distance. … We can do all sorts of things to control our interactions with them, but one thing is impossible: to stamp them out, or even to kill the bad ones and keep the good ones.

Waltner-Toews is quite clear about the message, and about the sort of science that will be required, not merely for coexisting with zoonoses but also for sustainable living in general. Playing the philological game, he reminds us that the ancient Indo-European world for earth, dgghem, gave us, along with ‘humus’, all of ‘human’, ‘humane’ and ‘humble’. As he says, community by community, there is a new global vision emerging whose beauty and complexity and mystery we can now explore thanks to all our scientific tools.”

This global vision is a post-normal vision. It applies to far more than just avian flu – from coastal erosion and the disposal of toxic or radioactive waste (as the Pilekys discuss for example) to climate change. This post-normal vision focuses on uncertainty, value loading, and a plurality of legitimate perspectives that demands an “extended peer community” to evaluate the knowledge generated and decisions proposed.

In all fairness, it would not be easy to devise a conventional science-based curriculum in which Waltner-Toews’ insights could be effectively conveyed. For his vision of zoonoses is one of complexity, intimacy and contingency. To grasp it, one needs to have imagination, breadth of vision and humility, not qualities fostered in standard academic training. … “

This post-normal science won’t be easy and won’t be learned or fostered entirely within the esoteric confines of an ivory tower. Science, with its logical rigour, is important. It is still the best game in town. But the knowledge produced by ‘normal’ science is provisional and its march toward truth is seemingly Sisyphean when confronted faced with the immediacy of complex contemporary environmental problems. To contribute to the production a sustainable future, a genuine science of sustainability would do well to adopt a more post-normal stance toward its subject.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.