This week one of the papers I have been working on as a result of my PhD research has been accepted for publication in the Journal of Artificial Societies and Social Simulation (JASSS). The paper, written with Raúl Romero-Calcerrada, John Wainwright and George Perry, describes the agent-based model of agricultural land-use decision-making we constructed to represent SPA 56 in Madrid, Spain. We then present results from our use of the model to examine the importance of land tenure and land use on future land cover and the potential consequences for wildfire risk. The abstract is below, and I’ll post again here when the paper is published and online.
An Agent-Based Model of Mediterranean Agricultural Land-Use/Cover Change for examining Wildfire Risk
James D. A. Millington, Raúl Romero-Calcerrada, John Wainwright, George L.W. Perry
(Forthcoming) Journal of Artificial Societies and Social Simulation
Abstract
Humans have a long history of activity in Mediterranean Basin landscapes. Spatial heterogeneity in these landscapes hinders our understanding about the impacts of changes in human activity on ecological processes, such as wildfire. Use of spatially-explicit models that simulate processes at fine scales should aid the investigation of spatial patterns at the broader, landscape scale. Here, we present an agent-based model of agricultural land-use decision-making to examine the importance of land tenure and land use on future land cover. The model considers two ‘types’ of land-use decision-making agent with differing perspectives; ‘commercial’ agents that are perfectly economically rational, and ‘traditional’ agents that represent part-time or ‘traditional’ farmers that manage their land because of its cultural, rather than economic, value. The structure of the model is described and results are presented for various scenarios of initial landscape configuration. Land use/cover maps produced by the model are used to examine how wildfire risk changes for each scenario. Results indicate land tenure configuration influences trajectories of land use change. However, simulations for various initial land-use configurations and compositions converge to similar states when land-tenure structure is held constant. For the scenarios considered, mean wildfire risk increases relative to the observed landscape. Increases in wildfire risk are not spatially uniform however, varying according to the composition and configuration of land use types. These unexpected spatial variations in wildfire risk highlight the advantages of using a spatially-explicit ABM/LUCC.