Creating a Genuine Science of Sustainability

Previously, I wrote about Orrin Pilkey and Linda Pilkey-Jarvis’ book, Useless Arithmetic: Why Environmental Scientists Can’t Predict the Future. In a recent issue of the journal Futures, Jerome Ravetz reviews their book alongside David Waltner-Toews’ The Chickens Fight Back: Pandemic Panics and Deadly Diseases That Jump From Animals to Humans. Ravetz himself points out that the subject matter and approaches of the books are rather different, but suggests that “Read together, they provide insights about what needs to be done for the creation of a genuine science of sustainability”.

Ravetz (along with Silvio Funtowicz) has developed the idea of ‘post-normal’ science – a new approach to replace the reductionist, analytic worldview of ‘normal’ science. Post-normal science is a “systemic, synthetic and humanistic” approach, useful in cases where “facts are uncertain, values in dispute, stakes high and decisions urgent”. I used some of these ideas to experiment with some alternative model assessment criteria for the socio-ecological simulation model I developed during my PhD studies. Ravetz’s perspectives toward modelling, and science in general, shone through quite clearly in his review:

“On the philosophical side, the corruption of computer models can be understood as the consequence of a false metaphysics. Following on from the prophetic teachings of Galileo and Descartes, we have been taught to believe that Science is the sole and certain path to truth. And this Science is mathematical, using quantitative data and abstract reasonings. Such a science is not merely necessary for achieving genuine knowledge (an arguable position) but is also sufficient. We are all victims of the fantasy that once we have numerical data and mathematical argument (or computer programs), truth will inevitably follow. The evil consequences of this philosophy are quite familiar in neo-classical economics where partly true banalities about markets are dressed up in the language of the differential calculus to produce justifications for every sort of expropriation of the weak and vulnerable. ‘What you can’t count, doesn’t count’ sums it all up neatly. In the present case, the rule of models extends over nearly all the policy-relevant sciences, including those ostensibly devoted to the protection of the health of people and the environment.

We badly need an effective critical philosophy of mathematical science. … Now science has replaced religion as the foundation of our established order, and in it mathematical science reigns supreme. Systematic philosophical criticism is hard to find. (The late Imre Lakatos did pioneering work in the criticism of the dogmatism of ‘modern’ abstract mathematics but did not focus on the obscurities at the foundations of mathematical thinking.) Up to now, mathematical freethinking is mainly confined to the craftsmen, with their jokes of the ‘Murphy’s Law’ sort, best expressed in the acronym GIGO (Garbage In, Garbage Out). And where criticism is absent, corruption of all sorts, both deliberate and unaware, is bound to follow. Pseudo-mathematical reasonings about the unthinkable helped to bring us to the brink of nuclear annihilation a half-century ago. The GIGO sciences of computer models may well distract us now from a sane approach to coping with the many environmental problems we now face. The Pilkeys have done us a great service in providing cogent examples of the situation, and indicating some practical ways forward.”

Thus, Ravetz finds a little more value in the Useless Arithmetic book than I did. But equally, he highlights that the Pilkeys offer few, rather vague, solutions and instead turns to Waltner-Toews’ book for inspiration for the future:

Pilkey’s analysis of the corruptions of misconceived reductionist science shows us the depth of the problem. Waltner-Toews’ narrative about ourselves in our natural context (not always benign!) indicates the way to a solution.”

Using the outbreak of avian flu as an example of how to tackle complex environmental in the ‘risk society’ in which we now live, Waltner-Toews:

“… makes it very plain that we will never ‘conquer’ disease. Considering just a single sort of disease, the ‘zoonoses’ (deriving from animals), he becomes a raconteur of bio-social-cultural medicine …

What everyone learned, or should have learned, from the avian flu episode is that disease is a very complex entity. Judging from TV adverts for antiseptics, we still believe that the natural state of things is to be germ-free, and all we need to do is to find the germs and kill them. In certain limiting cases, this is a useful approximation to the truth, as in the case of infections of hospitals. But even there complexity intrudes … “

Complexity which demands an alternative perspective that moves beyond the next stage of ‘normal’ science to a post-normal science (to play on Kuhn’s vocabulary of paradigm shifts):

“That old simple ‘kill the germ’ theory may now be derided by medical authorities as something for the uneducated public and their media. But the practice of environmental medicine has not caught up with these new insights.

The complexity of zoonoses reflects the character of our interaction with all those myriads of other species. … the creatures putting us at risk are not always large enough to be fenced off and kept at a safe distance. … We can do all sorts of things to control our interactions with them, but one thing is impossible: to stamp them out, or even to kill the bad ones and keep the good ones.

Waltner-Toews is quite clear about the message, and about the sort of science that will be required, not merely for coexisting with zoonoses but also for sustainable living in general. Playing the philological game, he reminds us that the ancient Indo-European world for earth, dgghem, gave us, along with ‘humus’, all of ‘human’, ‘humane’ and ‘humble’. As he says, community by community, there is a new global vision emerging whose beauty and complexity and mystery we can now explore thanks to all our scientific tools.”

This global vision is a post-normal vision. It applies to far more than just avian flu – from coastal erosion and the disposal of toxic or radioactive waste (as the Pilekys discuss for example) to climate change. This post-normal vision focuses on uncertainty, value loading, and a plurality of legitimate perspectives that demands an “extended peer community” to evaluate the knowledge generated and decisions proposed.

In all fairness, it would not be easy to devise a conventional science-based curriculum in which Waltner-Toews’ insights could be effectively conveyed. For his vision of zoonoses is one of complexity, intimacy and contingency. To grasp it, one needs to have imagination, breadth of vision and humility, not qualities fostered in standard academic training. … “

This post-normal science won’t be easy and won’t be learned or fostered entirely within the esoteric confines of an ivory tower. Science, with its logical rigour, is important. It is still the best game in town. But the knowledge produced by ‘normal’ science is provisional and its march toward truth is seemingly Sisyphean when confronted faced with the immediacy of complex contemporary environmental problems. To contribute to the production a sustainable future, a genuine science of sustainability would do well to adopt a more post-normal stance toward its subject.

Model Types for Ecological Modelling

Sven Erik Jørgensen introduces a recent issue of Ecological Modelling that presents selected papers from the International Conference on Ecological Modelling in Yamaguchi, Japan (28 August – 1 September 2006). The paper provides an overview of the model types available for ecological modelling, briefly highlighting the shift from a dominance of bio-geo-chemical dynamic models and population dynamics models in the 1970s toward the application of a wider spectrum of models. The emergence of new model types has come as a response to questions such as:

  • How can we describe the spatial distribution which is often crucial to understand ecosystem reactions?
  • How do we model middle number systems?
  • How do we model hetergenous populations and databases (e.g. observations from many different ecosystems)?
  • How do we model ecosystems, when our knowledge is mainly based on a number of rules/properties/propositions?

Jørgensen suggests there are at least 10 types of model currently available for modelling ecological systems (purely mathematical and statistical aside):

  1. (Bio-geo-chemical and bio-energetics), dynamic models
  2. Static models
  3. Population dynamic models
  4. Structurally dynamic models
  5. Fuzzy models
  6. Artificial neural networks
  7. Individual-based models and cellular automata
  8. Spatial models
  9. Ecotoxicological models
  10. Stochastic models
  11. Hybrid models

Of these, my particular interest is in spatial models, individual-based models and cellular automata models (with a passing interest in population models). This is largely because of my background in geography and landscape ecology, but also because of the heterogeneity in patterns, processes and behaviour often exhibited in socio-ecological systems.

Jørgensen offers a short description of each type, before listing their advantages and disadvantages. Here are a couple with my comments in italics:

Individual-Based Models (IBMs)and Cellular Automata (CA)
First, counter to Jørgensen, I would argue that CA models should be placed with the ‘spatial models’ – the ability of CA to represent space for me outweighs their potential to represent (limited) heterogeneity between cells. This aside, their grouping does make sense when we consider that these models can be relatively easily combined to represent individuals’ interactions across space and with a heterogeneous environment (via the CA).

Advantages

  • Are able to account for individuality – agreed, especially for IBMs
  • Are able to account for adaptation within the spectrum of properties – yes
  • Software is available; although the choice is more limited than by bio-geo-chemical dynamic models – but excellent free modelling environments such as NetLogo make this type of modelling widely available
  • Spatial distribution can be covered – yes

Disadvantages

  • If many properties are considered, the models get very complex – and may require the adoption and development of new techniques to present/analyse/interpret output (e.g. POM, narratives)
  • Can be used to cover the individuality of populations; but they cannot cover mass and energy transfer based on the conservation principle – I see no reason why the principle of energy and mass conservation could not be achieved by models of these types
  • Require many data to calibrate and validate the models – yes, this often the case, and in some cases (again) may require new approaches and types of data to calibrate and evaluate models

Spatial Models
Advantages

  • Cover spatial distribution, that is often of importance in ecology – yes, particularly Landscape Ecology, an entire discipline that has arisen since the 1970s and ’80s
  • The results can be presented in many informative ways, for instance GIS – GIS is a means to organise and analyse data as well as present data

Disadvantages

  • Require usually a huge database, giving information about the spatial distribution – this can certainly give rise to the issue of ‘model but no data’ and increases the costs of performing ecological research by adding space to time. We have found that our large (~4,000 sq km) Upper Michigan study area demands high time and resources needed for data collection.
  • Calibration and validation are difficult and time-consuming – maybe more so than non-spatial models, but probably not as much as some individual-based models
  • A very complex model is usually needed to give a proper description of the spatial patterns – not necessarily. A model should be only as complex as the patterns and processes it seeks to examine and the inclusion of space does not imply patterns or processes any more complex than a system with less variables or interactions that is non-spatial.

This isn’t a bad review of the types of ecological modelling being done. However, more incisive and useful insight could have been made with respect to landscape ecology and those models that are now beginning to attempt to account for human activity in ecological systems. [And it definitely could have been better written.] Maybe I’ll stop criticising sometime and write one myself eh?

A Young Scientist’s Guide To Gainful Employment

A recent article that ranked #1 on the Bulletin of the Ecological Society of America‘s Top Ten was led by Anita Morzillo, a former student in Fisheries and Wildlife at MSU. The article, entitled ‘A Young Scientist’s Guide To Gainful Employment: Recent Graduates’ Experiences And Successful Strategies‘ is based on a workshop supported by the NASA-MSU Professional Enhancement Award Program and has some wise words for any junior researcher starting out on their academic career. It’s written with ecologists and biologists in mind but much of the advice is likely to apply to other fields.

The paper is organized into four areas:

  1. Self promotion. What can I do prior to and during the job hunt?
  2. Personal considerations. How will both my professional and personal lives affect which jobs I should apply for?
  3. The application process. What should I expect when applying?
  4. Keeping it all in perspective. What if my application is rejected?

Section 1 considers publications, the importance of experiences beyond research, the ‘elevator speech’, getting your name recognised, and your network or personal connections. Section 2 discussed the necessity (or otherwise) of PhD and post-doctoral experience, issues around the geographic location of jobs, balancing professional and personal life, and issues regarding the careers of ‘significant others’. Section 3 then addresses the job application process from learning about the process before applying to phone and on-site interviews. The final section reflects on extraneous situations such as competing against ‘superstar’ applicants for positions and the need for perseverance in certain circumstances.

The paper concludes:

“Since we all are responsible for taking the initiative to forge our career path, our goal was to share our perspectives on and experiences with several broad themes involved in a job search. Do not hesitate to start thinking about the job hunt early in your career as a graduate student. Each position that you consider will offer unique opportunities to build your resume or curriculum vitae, and will present personal and professional trade-offs. Take time to think about and proactively discuss both professional and personal factors, but also keep in mind that you control only so much of the process. Good luck!”

Columbia University Press Sale


Columbia University Press currently has a sale on. They have savings of up to 80% on more than 1,000 titles from several fields of study. I was particularly interested in their books in the Environmental Studies and Ecology section and purchased several:

Previously on this blog I reviewed another book they have on sale, Useless Arithmetic: Why Environmental Scientists Can’t Predict the Future by Orrin H. Pilkey and Linda Pilkey-Jarvis.

When I get round to reading this new batch I’ll review some of these also (at first glance the Wiens et al. book looks particularly useful for any Landscape Ecologist – student, teacher or researcher). You’ve got up until May 31st to order yours.

US-IALE 2008 – Summary


A brief and belated summary of the 23rd annual US-IALE symposium in Madison, Wisconsin.

The theme of the meeting was the understanding of patterns, causes, and consequences of spatial heterogeneity for ecosystem function. The three keynote lectures were given by Gary Lovett, Kimberly With and John Foley. I found John Foley’s lecture the most interesting and enjoyable of the three – he’s a great speaker and spoke on a broader topic than the the others; Agriculture, Land Use and the Changing Biosphere. Real wide-ranging, global sustainability stuff. He highlighted the difficulties of studying agricultural landscapes because of the human cultural and institutional factors, but also stressed the importance of tackling these tricky issues because ‘agriculture is the largest disturbance the biosphere has ever seen’ and because of its large contribution to greenhouse gas emissions.

Presentations I was particularly interested in were mainly in the ‘Landscape Patterns and Ecosystem Processes: The Role of Human Societies’, ‘Challenges in Modeling Forest Landscapes under Climate Change’ and ‘Cross-boundary Challenges to the Creation of Multifunctional Agricultural Landscapes’ sessions.

In the ‘human societies’ session, Richard Aspinall discussed the importance of considering human decision-making at a range of scales and Dan Brown again highlighted the importance of human agency in spatial landscape process models. In particular, with regards modelling these systems using agent-based approaches he discussed the difficulty of model calibration at the agent level and stressed that work is still needed on the justification and evaluation phases of agent-based modelling.

The ‘modeling forest landscapes’ session was focused largely around use of the LANDIS and HARVEST models that were developed in and around Wisconsin. In fact, I don’t think I saw any mention of the USFS FVS at the meeting whilst I was there, largely because (I think) FVS has large data demands and is not inherently spatial. LANDIS and HARVEST work at more coarse levels of forest representation (grid cell compared to FVS’ individual tree) allowing them to be spatially explicit and to run over large time and space extents. We’re confident we’ll be able to use FVS in a spatially explicit manner for our study area though, capitalising on the ability of FVS to directly simulate specific timber harvest and economic scenarios.

The ‘multifunctional agricultural landscapes’ session had an interesting talk by Joan Nassauer on stakeholder science and the challenges it presents. Specific issues she highlighted were:
1. the need for a precise, operational definition of ‘stakeholder’
2. ambiguous goals for the use of stakeholders
3. the lack of a canon of replicable methods
4. ambivalence toward the quantification of stakeholder results

Other interesting presentations were given by Richards Hobbs and Carys Swanwick. Richard spoke about the difficulties of ‘integrated research’ and the importance of science and policy in natural resource management. He suggested that policy-makers ‘don’t get’ systems thinking or modelling, and that some of this may be down to the psychological profiles of the types of people that go into policy making. Such a conclusion suggests scientists need to work harder to bridge the gap to policy makers and do a better job of explaining the emergent properties of the complex systems they study. Carys Swanwick talked about the landscape character assessment, which was interesting for me having moved from the UK to the US about a year ago. Whilst ‘wilderness’ is an almost alien concept in the UK (and Europe as a whole), landscape character is something that is distinctly absent in the new world agricultural landscapes. Carys talked about the use of landscape character as a tool for conservation and management (in Europe) and the European Landscape Convention. It was a refreshing change from many of the other presentations about agricultural landscape (possibly just because I enjoyed seeing a few pictures of Blighty!).

Unfortunately the weather during the conference was wet which meant that I didn’t get out to see as much of Madison as I would have liked. Despite the rain we did go on the Biking Fieldtrip. And yes, we did get soaked. It was also pretty miserable weather for the other fieldtrip to and International Crane Foundation center and the Aldo Leopold Foundation (more on that in a future blog), but interesting nevertheless.

Other highlights of the conference for me were meeting the former members of CSIS and eating dinner one night with Monica Turner. I also got to meet up with Don McKenzie and some of the other ‘fire guys’, and a couple of people from the Great Basin Landscape Ecology lab where I visited previously. And now I’m already looking forward to the meeting next year in Snowbird, Utah (where I enjoyed the snow this winter).

April 2008 Conference Posters


Final preparations are underway for the US-IALE Symposium in Madison, WI, next week. I’ve finished the poster that we’ll be presenting there on the progress we’re making withour ecological-economic forest landscape model. We’ve also been putting the finishing touches on our posters for the wildfire session at EGU in Vienna (which Raul will be attending and presenting our posters at). Links to .pdf versions of the posters are below. Thoughts and photos from Madison and Chicago (where I’ll be stopping off for a couple of days on the way home) on my return.

An Ecological-Economic Model for Sustainable Forest Management: Modeling Deer Distributions from Local & Landscape Characteristics
J.D.A. Millington, J.P. LeBouton, M.B. Walters, K.R. Hall, M.S. Matonis, E.J. Laurent, F. Lupi, S. Chen, J. Liu

An Integrated Socio-Ecological Simulation Model of Succession-Disturbance Dynamics in a Mediterranean Landscape
J.D.A. Millington, J. Wainwright, G.L.W. Perry, R. Romero-Calcerrada, & B.D. Malamud

Spatial modelling of the influence of human activity on wildfire ignition risk in a Mediterranean landscape
R. Romero-Calcerrada, F. Barrio-Parra, J.D.A. Millington, C.J. Novillo

XIII World Forestry Congress 2009


The call for papers for the XIII World Forestry Congress is now open. To be held in Buenos Aires, Argentina, in October 2009 the congress will address “the sustainable development of forests from a global and integral perspective”. Authors are invited to submit papers and posters expressing new ideas and providing information on experiences, theoretical models and interesting initiatives. Papers will be published in the Congress Proceedings and on the Congress’ official website.

US-IALE 2008 – Landscape Change and other CSIS involvement

Today I started thinking in earnest about the 2008 US-IALE Symposium to be held in Madison, Wisconsin early next month.

I’ll be presenting a poster on our early model development work on the USDA deer/timber regeneration project at CSIS. I will also be chairing the Landscape Change session which has presentations discussing change within and across a diverse range of landscapes including, the Great Plains of the US, the Bolivian Andes and Ukrainian Carpathian mountain ranges, Boreal and Tropical forests, and the Congo Basin.

Whilst in Madison I also plan on attending sessions, symposia, workshops and field-trips devoted to Landscape Patterns and Ecosystem Processes, Modeling Forest Landscapes under Climate Change, Multifunctional Agricultural Landscapes, Forest Landscapes, and Fire. At this last session I’m particularly looking forward to the presentation entitled “Ecological complexity produces simple structure: Power laws in low-severity fire regimes” by Don McKenzie, co-convener of the wildfires session at EGU 2008 the following week (but which I will not be attending).

There will be plenty of other activity by members of CSIS. Jack Liu, president-elect of US-IALE, and CSIS PhD student Vanessa Hull are co-organising the H. Ronald Pulliam Symposium: Sources, Sinks, and Sustainability. Mao-Ning Tuanmu (PhD student) will be making a presentation entitled “Detecting understory vegetation using MODIS data: Implications for giant panda habitat evaluations” in the Remote Sensing session, and Wei Liu (also CSIS PhD student) will present “Conservation success leads to human-wildlife conflicts: Spatial patterns of crop damages and livestock depredation in Wolong Nature Reserve for Giant Pandas, China” in the Social Issues session.

And there’s loads more going on so it promises to be an interesting and busy week! If I get online during a spare 5 minutes I’ll see if I can blog an update on how it’s all going…

Tackling Amazonian Rainforest Deforestation

This week’s edition of Nature devotes an editorial, a special report and an interview to the subject of tropical rainforests and their deforestation. The articles highlight both the proximate causes and underlying driving forces of tropical deforestation, and the importance of human activity as an agent of change (via fire for example), in these socio-ecological systems.

The editorial considers the economics of rainforest destruction, with regards to global carbon emissions. It suggests that deforestation must be integrated into international carbon markets, to reward those countries that have been able to control the removal of forest land (such as India and Costa Rica). Appropriate accounting of tropical rainforest carbon budgets is required however, and the authors point to the importance of carbon budget modelling and the monitoring of (via satellite imagery for example) change in rainforest areas over large spatial extents. Putting an economic price on ‘ecosystem services’ is key to this issue, and the editorial concludes:

One of the oddly positive effects of global warming is that it has given the world the opportunity to build a more comprehensive and inclusive economic model by forcing all of us to grapple with our impact on the natural environment. We are entering a phase in which new ideas can be developed, tested, refined and rejected as necessary. If we find just one that can beat the conventional economic measure of gross domestic product, and can quantify some of the basic services provided by rainforests and other natural ecosystems, it will more than pay for itself.


The special report focuses on the efforts of the Brazilian government to curb the rate of deforestation in the their Amazonian forests. The Brazilian police force is blockading roads, conducting aerial surveys and inspecting agricultural and logging operations, to monitor human activities on the ground. Brazilian scientists meanwhile are monitoring the situation from space, and have developed methodologies and techniques that are leading the way globally in the remote monitoring of forests. The Brazilian government is a keen advocate of the sort of economic approaches to the issues of rainforest destruction highlighted in the editorial outlined above, and sees this rigorous monitoring as key to be able to show how much carbon they can save by preventing deforestation.

Halting the removal of forest cannot simply be left to carbon trading alone, however, and local initiatives need to be pursued. To ensure the forest’s existence is sustainable, local communities need to be able make money for themselves without chopping down the trees – if they can do this it will be their in their interests NOT to remove forest. But developing this incentive has not been straightforward. For example, some researchers have have suggested that as commodity prices for crops such as soya beans have increased (possibly due to increased demand for corn-based ethanol in the US) deforestation has increased as a result. Although the price of soya beans may be a contributing factor to rainforest removal, Ruth DeFries (who will be visiting CSIS and MSU next week as part of the Rachel Carson Distinguished Lecture Series) suggests that it is not the main driver. Morton et al. found that during for the period 2001-04, conversion of forest to agriculture peaked in 2003. This situation makes it clear that there are both proximate causes and underlying driving forces of tropical deforestation. The Nature special report suggests:

If the international community is serious about tackling deforestation, it will probably need to use a hybrid approach: helping national governments such as Brazil to fund traditional policies for enforcement and monitoring and enabling communities to experiment with a market-based approach.


But how long do policy-makers have to discuss this and get these measures in place? One set of research suggests 55% of the Amazon rainforest could be removed over the next two decades, and the complexity of the rainforest system means that a ‘tipping point’ (i.e., an abrupt transition) beyond which the system might not recover (i.e., reforestation would not be possible). The Nature interview with Carlos Nobre highlights this issue – the interactions of climate change with soil moisture and the potential for fire indicate that the there is risk of rapid ‘savannization’ in the eastern to southeastern Amazon as the regional climate changes. When asked what the next big question scientists need to address in the Amazon is, Nobre replies that the role of human-caused fire will be key:

Fire is such a radical transformation in a tropical forest ecosystem that biodiversity loss is accelerated tremendously — by orders of magnitude. If you just do selective logging and let the area recover naturally, perhaps in 20–30 years only a botanist will be able to tell that a forest has been logged. If you have a sequence of vegetation fires going through that area, forget it. It won’t recover any more.


As I’ve previously discussed, considering the feedbacks and interactions between systems is important when examining landscape vulnerabilities to fire. Along with colleagues I have examined the potential effects of changing human activity on wildfire regimes in Spain (recently we had this paper published in Ecosystems and you can see more wildfire work here). However, the integrated study of socio-economic and ecological systems is still very much in its infancy. And the processes of landscape change in the northern Mediterranean Basin and the Amazonian rainforest are very different; practically inverse (increases in forest in the former and decreases in the latter). As always, plenty more work needs to be done on these subjects, and with the potential presence of ‘tipping points’, now is an important time to be doing it.

Forest Ecology and Management Special Issue: Forest Landscape Modeling

In June 2006 the China Natural Science Foundation and the International Association of Landscape Ecology sponsored an international workshop of forest landscape modelling. The aim of the workshop was to facilitate a discussion on the progress made in the theory and application of forest landscape models. A special issue of Forest Ecology and Management, entitled Forest Landscape Modeling – Approaches and Appplications [Vol. 253, Iss. 3], presents 12 papers resulting from that meeting. In their editorial, He et al. summarise the papers, organising them into three sections that describe current activities in forest landscape modelling: (1) effects of climate change on forest vegetation, (2) forest landscape model applications, and (3) model research and development.

The LANDIS model is used in several of the papers on climate and human management of forest systems. Advances in the representation of processes that propagate spatially, including fire and seed dispersal, are discussed in several of the papers examining model research and development. He et al. conclude their editorial by reiterating why landscape models are a vital tool for better understanding and managing forested regions of the world:

The papers represented in the special issue of forest landscape modeling highlight the advances and applications of forest landscape models. They show that forest landscape models are irreplaceable tools to conduct landscape-scale experiments while physical, financial, and human constraints make real-world experiments impossible. Most of the results presented in this issue would not have been possible without the use of forest landscape models. Forest landscape modeling is a rapidly developing field. Its development and application will continually be driven by the actual problems in forest management planning and landscape-scale research. We hope that the papers contained in this special issue will serve both researchers and managers who are struggling to incorporate large-scale and long-term landscape processes into their management planning or research.